
Ten Tough Questions to Ask When Developing a Project Test Plan

by Bryan Campbell, www.bryancampbell.com
One reason so many software development projects fail is a poor testing framework to ensure what is developed will actually work in production. Developing a comprehensive test plan for a software development projects requires a specialized skill set but as a project manager you need to be able to ask the right questions before signing off. This article is part of a series that provides ten tough questions every project manager should ask when reviewing the testing components of a project plan.

Question 1: How much time is spent testing?

One of the biggest reasons software applications are not properly tested is that the time to test the application is rarely inlcuded in the project plan. Not placing enough emphasis on testing is common side effect of project teams cutting corners in the hopes of meeting aggressive timelines. In addition, testing isn’t seen as particularly ‘glamorous’ and either the time to perform it is underestimated or it is minimized with the belief that tools or skilled resources will minimize the amount of time required. While there are a range of estimates for the appropriate amount of testing, most business systems will require 20-30% of the project’s person-days total in testing.
Question 2: What is being tested?

Many project plans will identify and staff the testing of the application (known as functional testing) but ignore testing for other important elements of the application. Having an application that performs as required but can only support one user at a time, or takes two minutes to display a new screen probably won’t be viewed as a success. Ask what components of the system are being tested. Look for tests that include performance and load tests for the system. Testing for security is often forgotten and can have devastating consequences. Data integrity tests, user interface tests and failover and recovery tests should all be identified and staffed. Make sure the testing addresses your business cycle too, if you process twice as many orders in the month of December make sure that your planned stress testing covers this scenario.
Question 3: What testing metrics will be used?

Testing can provide the best insights into whether a project will actually be able to meet its target date and budget. Even if key development milestones are being met the project might actually be behind schedule if this code is buggy or doesn’t meet requirements. There are a number of testing metrics that should be communicated during status reports, total defects logged, open defects, defects by type, average time to correct a defect, defects per line of code etc. These metrics should help management assess project progress and quality.
Question 4: Who is performing the testing?

It is often assumed that testing can be performed by junior staff or by the development team itself which is often an attempt to save money, time or both. While the development team needs to develop unit tests to validate the logic of the code that they write, this is only one component of testing. Likewise, junior staff might be able to follow documented test scripts but using them exclusively will not test the application as thoroughly as required. Use a separate testing group ideally comprised of business users and some technical users (to ensure appropriate system tests such as load and security tests). Ask where the testing team will be located and what their experience with the system or business will be. Remote test teams can help test connectivity issues but you will want to ensure they can access the development team for questions. Your testing team will ultimately be telling you whether the application meets requirements and is ready for production, make sure the team is composed of people you can trust and rely on them to thoroughly test the application.
Question 5: How is the testing team aligned with the development team?

Most developers dislike testing because defects mean re-work, however, proper testing can also make sure that that what they have developed is the best reflection of their work. The testing and development teams need to work closely to be successful. Ask questions on how the teams will interact, when status meetings will be held between the teams, and whether ground rules for identifying defects been shared between the development and the testing teams.
Question 6: When will testing be done?

In waterfall methodology based projects, testing is usually completed near the end of the project after development has been completed. The advantage of this approach is that it provides a clear delineation between development and testing and makes defect correction easier to manage. Iterative development projects require a more carefully orchestrated approach to testing. While iterative development provides much higher visibility of the development process through frequent deliverables, it requires a similar iterative testing process to continually test the completed application. Iterative development also offers the opportunity to more thoroughly test the application’s most important components (from one iteration to the next). Understand which development approach is being applied to the project. The project plan should show when testing will be conducted and what will be tested. If an iterative development plan is being followed, there should be a testing buffer every three iterations to ensure all defects can be baselined and corrected.
Question 7: Are tests based on requirements?
The most significant software defects are not caused by poorly written code but rather poorly defined requirements that are not properly tested. Most ‘bad’ code is captured by developers through their unit tests and their own internal testing, however, this working code needs to tested for how it reflects what your users really want. There can be significant gaps between what a user asks for, how it’s captured in requirements and how it’s realized in code. There should be traceability between requirements, code and tests. Test cases should be created from use cases or similar documentation. Ask how tests will be developed and look for dependencies between requirements, code and test case development.
Question 8: What automated testing will be used?

Developing automated test scripts can relieve labor intensive and onerous tasks from project members as well as increase regression testing for the application (the process of retesting the application after a change has been introduced). However, developing automated tests require special tools which can add costs to the project. In addition, these tools need support and the scripts themselves must be updated and maintained anytime the code or data changes. Often times, automated test tools can be integrated with requirements management and defect tracking tools. Ask who will be responsible for maintaining the automated test scripts and make sure it doesn’t cost you more to support these tools than it would to simply hire the labor to perform the tests.
Question 9: How will defects be tracked and managed?

As your project progresses the number of defects identified and corrected will grow. A good defect management system is needed to capture, manage and report these defects. While small projects might be able to use a simple spreadsheet or database these products do not scale very well and can severely limit your ability to manage defects. Entering defects takes time so ensure that only the most important information is captured otherwise the costs of using the system will skyrocket and users will be reluctant to use it. Your defect tracker should have reporting and metric tools, automatic escalation and support discussions between the test and development teams if there is need for further detail or to reclassify a defect. For larger projects the project plan should also identify a test coordinator to assign and track defects. This role requires a person with sound business and good management skills, not a failed programmer.
Question 10: Does testing reflect the acceptance criteria for the system?
In the final analysis the end users of the system must agree to accept the system before it can be deployed. The exact process for gaining this user acceptance criteria needs to be agreed on at the beginning of the project to prevent painful surprises at the end. Testing needs to reflect this user acceptance criteria. Aligning user acceptance criteria with testing has two benefits. The first is that it focuses user acceptance criteria so that it is specific and tangible. Secondly, it ensures that the software system is tested directly to the criteria defined by its users which will determine its success. Understanding and testing acceptance criteria throughout the project lifecycle will help you make important tradeoff decisions if the project reaches a critical impasse during testing. Compromise will still be required but compromise is better than shelf-ware.

Page 3 of 3
Bryan Campbell, MBA
7/29/2014

PMP. PMI-ACP, CSM, ITIL, LSSGB

www.bryancampbell.com

