
Requirements and Analysis:
Techniques and Tools
(article)

The Requirements Discipline
Requirements Drive Development: A Use Case-driven Process

As stated in previous posts and in articles like Real World
Development Practices: RUP and XP , I apply much of Craig
Larman’s UP style and its emphasis on rightsized, “essential”
use cases, which then collectively act as a lynch pin that
links together the disparate disciplines of Business
Modeling, Requirements, Analysis and Design, Implementation,
Test and Project Management. Furthermore, achieving success
with use cases is more difficult than it first appears, and
many pitfalls in usage await the inexperienced practitioner.
Consistent application of the techniques espoused by Alistair
Cockburn’s de facto standard for specifying use cases and
structuring them in relation to goals, which provides a
repeatable, traceable discipline for use case development and
maintenance.

Executable Requirements: Aligning Requirements and
Development

These days I particularly like the idea of ‘Executable
Requirements’ (XR) to capture requirements. This approach
has the benefit of not only enabling the Pull method
described above but they also ensure that software developed
matches the specifications provideds. XR bsaically provides
a mechanism where a requirement is captured in a ‘pass/fail’
style using an Excel or HTML table to define the

https://bryancampbell.com/requirements-and-analysis-techniques-and-tools/
https://bryancampbell.com/requirements-and-analysis-techniques-and-tools/
https://bryancampbell.com/requirements-and-analysis-techniques-and-tools/
https://bryancampbell.com/Articles/Software_Dev.htm
https://bryancampbell.com/Articles/Software_Dev.htm
http://alistair.cockburn.us/crystal/articles/sucwg/structuringucswithgoals.htm
http://alistair.cockburn.us/crystal/articles/sucwg/structuringucswithgoals.htm

requirements. The power of this approach is that it not only
moves requirements out of the fuzzy, prose style that can
plague use cases (and which is why use cases have so many
sections) but also allow a team to automate a series of tests
that demonstrate that a requirement has been ‘fulfilled’.
 For those of us with a testing orientation we can
immediately see the opportunity to regress through all of our
tests every iteration and ensure that new changes don’t break
old functionality. There’s a lot to this subject and
something that I’ll update on more in the future but there
are some good reference sources for this such as the Fitnesse
wiki and Ward Cunningham’s Functional Integration Testing
(FIT) Framework.

Managing Risk and Non-functional Requirements (ATAM, EVO)

Addressing Non-Functional or Supplementary Specifications is
often a neglected component of software development. Notable
references in this area are Tom Gilb’s iterative EVO method,
which emphasizes full and careful definition of non-
functional requirements (which Gilb calls “attributes”
leveraging his Planguage approach) and SEI’s ATAM
(Architecture Tradeoff Analysis Method) methodology.
Documentation of all significant architectural decisions – a
component of the ATAM approach – as a key mechanism for
reasoning about and justifying choices between architectural
options. This fits well with leveraging risk analysis as a
major driver of iteration plans.

Early, Continuous Delivery of Business Value: Complementing
the Risk Driver

The agile methods complement UP by providing an important
emphasis, not only on risk reduction, but also on the early
and continuous delivery of business value. Hence, a full
iterative development discipline has two drivers: delivery of
useful functionality and management of risks. The use case-

http://fitnesse.org/
http://fitnesse.org/
http://en.wikipedia.org/wiki/Framework_for_Integrated_Test
http://www.xs4all.nl/~nrm/EvoPrinc/
http://www.sei.cmu.edu/ata/ata_init2.html
http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html

driven approach, when combined with non-functional drivers
and the dispatching of work into developer tasks provides
tangible evidence of progress to the business at each
iteration’s end. (See some of the XP, EVO, and FDD links
for further details.)

The Analysis Discipline
From Use Cases to Developer Tasks

The Larman method takes analysts and designers through a
series of simple intermediate steps leading up to operation
contracts on a system or service level interface. In
accordance with Agile Modeling [below], intermediate
artifacts need neither be formally developed nor maintained
if the ceremony level of the process does not warrant it. I
also believe strongly in a “pull”-driven approach to
developer task definition, a key element in Lean Programming.

Applying Analysis Patterns to Streamline Design

I encourage analysts to leverage Martin Fowler’s Analysis
Patterns, rather than reinvent the wheel. This emphasis
provides synergy with the product line process mentioned
later, and also opens the analysis up to alignment with
standardized vertical models such as well defined reference
models (e.g. Insurance Application Architecture). Another
useful source of such patterns is Penker and Eriksson’s book.

http://www.extremeprogramming.org/rules/releaseoften.html
http://www.xs4all.nl/~nrm/EvoPrinc/EvoPrinc1.htm
http://www.featuredrivendevelopment.com/node/view/531
https://bryancampbell.com/blog2/2008/03/post.html#AM#AM
https://bryancampbell.com/blog2/2008/03/post.html#LeanProgramming#LeanProgramming
http://www.amazon.com/exec/obidos/ASIN/0201895420/
http://www.amazon.com/exec/obidos/ASIN/0201895420/
http://www.amazon.com/exec/obidos/ASIN/0471295515/

Discipline by Discipline:
Requirements
As many who follow my blog entries and have read my articles
know, I use the Unified Process as framework to manage
projects and programs. While the phases of the UP (Inception,
Elaboration, Construction and Transition) are powerful ways to
manage the risk and narrow the ‘cone of uncertainty‘ of a
project, I find the disciplines within the Unified Process as
useful containers for ensuring roles are established and
that artifacts are being developed that will support the
project.

However, beyond the phases and disciplines I find most of the
artifacts and activities as too abstract for effective
application in most real world projects. Instead, I mix in a
series of techniques that I have applied successfully and
found round out the details of each of the disciplines with
RUP. This first article focuses on the top of the “V” model,
Requirements and Analysis.

Read More

https://bryancampbell.com/discipline-by-discipline-requirements/
https://bryancampbell.com/discipline-by-discipline-requirements/
http://www.construx.com/Page.aspx?hid=1648
https://bryancampbell.com/requirements-and-analysis-techniques-and-tools/

