
Discipline by Discipline:
Design (article)

Discipline by Discipline: Design
One of the most important aspects of the Unified Process and what I emphasize

when managing complex software development projects is to focus on an

‘architecture-centric‘ approach to building a system. The best way to

accomplish this from my perspective is to ensure a prioritization of user

stories/use cases based on not only business value but architectural

significance. It’s also important to remember that building architecturally

significant components can still demonstrate business value at the completion of

an iteration. A simple UI showing how data can be entered, stored and retrieved

(even if it’s not editable) shows a business stakeholder that the ‘tiers’ and

‘layers’ that exist behind the scenes are adding value. One way to ensure a

balance between business needs and architectural requirements is to establish a

troika of the Product Owner, Architect and Project Manager to review and assess

the Release Plan and its prioritization.

The Design Discipline

Balancing the amount of effort applied to formal Design: Agile Modeling

(AM)

In large corporations or projects, or in safety-critical domains, a Scrum/XP

approach to documentation is too lightweight. However, even under these

circumstances, it is important to protect projects from having to produce

unnecessary obligations such as “shelfware” artifacts. Scott Ambler’s Agile

Modeling approach in which artifacts are only produced if they really add

value, and maintenance of intermediate artifacts is minimized, is a useful

framework to manage this balance. A good reference model for determining how

much ‘ceremony’ is required for a project can be found in an excellent book by

Barry Boehm and Richard Turner Balancing Agility and Discipline: A Guide for

the Perplexed.

https://bryancampbell.com/discipline-by-discipline-design-article/
https://bryancampbell.com/discipline-by-discipline-design-article/
https://bryancampbell.com/blog2-mt/mt-tb.fcgi/10
http://www.agilemodeling.com/
http://www.agilemodeling.com/
http://books.google.com/books?id=MWhXwkHsS0gC&dq=balancing+agility+and+discipline&pg=PP1&ots=TViFWOlvSc&sig=g9EvZxZ-RiEB4cOI97byTITn3fc&hl=en&prev=http://www.google.com/search?sourceid=navclient&ie=UTF-8&rlz=1T4TSHB_en___US233&q=balancing+agility+and+discipline&safe=active&sa=X&oi=print&ct=title&cad=one-book-with-thumbnail
http://books.google.com/books?id=MWhXwkHsS0gC&dq=balancing+agility+and+discipline&pg=PP1&ots=TViFWOlvSc&sig=g9EvZxZ-RiEB4cOI97byTITn3fc&hl=en&prev=http://www.google.com/search?sourceid=navclient&ie=UTF-8&rlz=1T4TSHB_en___US233&q=balancing+agility+and+discipline&safe=active&sa=X&oi=print&ct=title&cad=one-book-with-thumbnail

Designing for Future Change: Service-oriented Architectures (SOA)

A Service-oriented Architecture is one in which all functions, or services,

are defined using a description language and have invokable interfaces that

are called to perform steps in business processes. Each such service must

have unambiguous semantics (see Design By Contract), and should preferably be

idempotent (repeatable without side effects). Larman’s expedited UP leads

smoothly to the definition of such architectures since it promotes the

definition of system or component-level operations with well-defined semantics

(contracts). Although this requires a degree of maturity within a development

organization its benefits are significant.

Realizing the Full Benefits of Reuse: Product Line Architectures

Adopting some form of Product Line Process is indispensable to the achievement

of true asset reuse across a range of projects and products. The earlier

model of “if we build a component repository, they will come” simply does not

work. To realize reuse benefits the enterprise must combine an application

engineering process with a domain engineering process. A standard

recommendation is to adopt this two-level approach wherever and whenever

feasible. Using commonality/variability analysis together with a full

repertoire of variation point management techniques (model management and

refactoring, model-driven architecture, management of variable configurations,

design patterns, framework development, polymorphism and AOSD) in order to

achieve this well-defined relationship between the domain engineering and

application engineering processes. (Of course, one of the reasons software

development has moved towards OO technologies is that they contribute

importantly to this repertoire.).

Design by Contract (DBC)

Design by Contract is a simple but powerful discipline for writing

specifications of use cases, services, system operations, component

operations and class methods. It uses the concepts of pre conditions,

post conditions and invariants to achieve a full separation of “what”

from “how”. The benefits of so doing are enormous, and include:

Precision,

http://www.webopedia.com/TERM/S/Service_Oriented_Architecture.html
https://bryancampbell.com/blog2/2008/04/post_1.html#DBC
http://www.sei.cmu.edu/productlines/index.html
http://archive.eiffel.com/doc/manuals/technology/contract/

Lack of ambiguity,

Testability, and

The ability to write short specifications even for complex

implementations.

